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Abstract—Biodiesel offers cleaner combustion than conventional 
diesel fuel including reduced particulate matter, carbon monoxide 
and unburned hydrocarbon emissions. However, several studies point 
to slight increase in NOx emissions (about 10 - 20%) for biodiesel 
fuel, compared with conventional diesel fuel. As the use of biodiesel 
has increased tremendously, the increase in NOx emissions could 
become a significant barrier to market expansion. For universal 
acceptance of biodiesel, it is desirable to reduce these NOx 
emissions, at least to levels observed with petro diesel combustion. 
Many researchers proposed some possible reasons for the increase of 
NOx in biodiesel fuel.Some studies have pointed out that the 
increased formation of prompt NOx is responsible for biodiesel NOx 
effect. The treatment of biodiesel with antioxidants is a promising 
approach, because it reduces the formation of hydrocarbon free 
radicals, which are responsible for prompt NOx production in the 
combustion process. 

1. INTRODUCTION 

There is considerable interest worldwide in the replacement of 
petrodiesel by biodiesel in order to reduce the harmful diesel 
exhaust emissions fromengines. However, the use of biodiesel 
results in a noticeable increase (about 10%) in NOx emissions 
when compared to conventional diesel [1]. The biodiesel 
market in the US is expected to reach 6,453 million litres in 
2020 and 45,291 million litres globally [2]. As a consequence, 
the increase in NOx emissions could become a significant 
barrier to biodiesel market expansion. The nitrogen oxide 
compounds not only have direct effects on human health, but 
also affect the environment and have ground level ozone-
forming potential. When compared to diesel NOx, a relatively 
small amount of research has been conducted on biodiesel 
NOx emissions. 

NOx is generated during combustion by three mechanisms: 
thermal, prompt, and fuel. High combustion temperature 
(1700 K) breaks the strong triple bond of nitrogen molecules 
and form highly reactive atomic nitrogen which reacts with 
oxygen and generates thermal NOx. According to prompt 
mechanism, formation of free radicals in the flame front of 

hydrocarbon flames leads to rapid production of NOx. The 
fuel NOx is formed by the reaction of nitrogen bound in the 
fuel with oxygen during combustion. 

Thermal and prompt NOx are the dominant mechanisms in 
biodiesel fuelled engines since; biodiesel does not contain 
fuel-bound nitrogen. Many researchers proposed some 
possible reasons for the increase of NOx in biodiesel fuel; 
however, the exact cause of the biodiesel NOx effect is still 
under investigation. The National Renewable Energy 
Laboratory of USA (NREL) [3] has suggested that the 
increase in NOx is not driven by thermal NOx formation and 
therefore may involve some pre-combustion chemistry of 
hydrocarbon free radicals. This would result in an increased 
formation of prompt NOx. Thermal mechanism is largely 
unaffected by fuel chemistry, where as prompt mechanism is 
sensitive to free radical concentrations within the reaction 
zone. 

Brezinsky et al. [4] have reported that the amount of acetylene 
production from the unsaturated constituents of biodiesel is 
the primary contribution to the increased NOx formation. The 
acetylene forms CH radical which is responsible for prompt 
NOx formation. Other authors concluded that the effect of 
biodiesel on NOx emissions is mainly due to elevated 
combustion temperature. Lin [5] suggested that the rich 
oxygen content of biodiesel leads to complete combustion but 
results in high combustion temperature and NOx formation. In 
contrast, Lu et al. [6] reported that port injection of 
oxygenated fuel ethanol in a biodiesel fuelled engine 
significantly reduces NOx. The advanced injection timing due 
to high bulk modulus of biodiesel, longer fuel penetration into 
the engine cylinder, decreased radiative heat transfer due to 
reduced soot formation, shorter ignition delay and higher heat 
release rate of biodiesel fuel are the other factors that 
influence the thermal NOx formation [7]. 

Knothe et al. [13] found more NOx emissions with biodiesel 
fuelled engine fitted with EGR (a method to reduce thermal 
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NO)when compared to conventional petro-diesel fuelled 
engine. This shows that thermal NO has less effect on 
biodiesel NOx emissions. Furthermore, Mueller et al. [5] 
concluded that changes in prompt NO formation may play an 
important role in biodiesel NOx effect. Recently, Somand 
Longman [14] of Argonne National Laboratory found higher 
prompt NO formation in biodiesel combustion. 

CH and OH radicals are continuously formed during 
combustion reactions. The formation of CH radicals is an 
indicator of low temperature pre-combustion reactions and the 
formation of prompt NO. And the presence OH radicals 
indicate high temperature reactions and thermal NO [10]. 
Additions of small amounts of antioxidants into the fuel 
suppress free radical formation by reacting with peroxyl 
radicals to form new inactive radicals so interrupting the 
propagation step. The hydrogen donating ability of a chain 
breaking antioxidant has a very important effect on its 
antioxidant activity. The hydrogen is released from the weak 
OH (phenols, hydroquinones) and NH (aromatic amines, 
diamines) bonds of antioxidants. In general phenolic 
antioxidants (TBHQ, BHT, BHA etc.) are added to biodiesel 
to prevent degradation. They are so effective in controlling 
free radicals at room temperature but their antioxidant activity 
decreases rapidly with increasing temperature. The quantum-
chemical study of an aromatic amine N, N′-diphenyl-p-
phenylenediamine (DPPD) indicate that it retains 
itsantioxidant activity even at increased temperatures [11]. 

The purpose of this study was to evaluate the effects of N′-
diphenyl-1,4-phenylenediamine(DPPD) antioxidant on NOx 
and other emissions of a DI diesel engine powered by Cotton 
seed oil methyl ester(CSOME). 

Table 1: Specifications of test fuels 

Properties CSOME Diesel Indian oil 
Density at 15 °C kg/m3  830 822 
Viscosity at 40 °C mm/s2  6.0 2.5 
Flash point °C  110 66 
Pour point °C  4 12 
Calorific value kJ/kg  39600 43400 
Cetane number 52 43 

 
Table 2: Specifications of test antioxidant 

Antioxidant Specifications  
N,N′-diphenyl 
1,4phenylenediamine 
(DPPD) 

CAS number 
Molecular weight  
Chemical formula 
Melting point °C 
 

74-31-7 
260.34 
C18H16N2 
144 

 
The specifications of the test fuels and antioxidants and 
biodiesel are presented in Tables 1 and 2 respectively. The 
chemical structures of the antioxidant is given in Fig. 1. The 
antioxidant DPPD contains NH substituent. 

 

Fig. 1: Fig. example. 

2. EXPERIMENT DETAILS 

The engine used in the present study is the computerized 
Kirloskar-make 4 stroke water cooled single cylinder diesel 
engine of 5.2 kW rated power. The schematic diagram of the 
experimental setup is shown in Fig. 2. The engine was directly 
coupled to an eddy-current dynamometer equipped with a load 
controller. The fuel flow rate, speed, load, exhaust gas 
temperature and gas flow rate were displayed on a personal 
computer. 

 

Fig. 2: Schematic diagram of experimental setup 

 The specifications of the engine are given in Table 3. The 
cylinder pressure was measured by a Piezo sensor of PCB 
Piezotronics Model M111A22 and the signal of the cylinder 
pressure was acquired for every 1°CA. Exhaust emissions 
were measured with an AVL DiGas 444 five gas analyser. The 
analyser provided a NO range of 0 to 5000 ppm with a 
resolution of 10 ppm, CO measurement range of 0% to 20% 
by volume with a resolution of 0.01%, and HC range of 0 to 
20,000 ppm with a resolution of 10 ppm. The accuracy of the 
instrument is 10%, 5% and 0.5% of the indicated value for the 
measurement of NO, HC and CO respectively. As for smoke 
measurement, the automatic NETEL NPMCH1 smoke meter 
was employed. The smoke intensity was measured as light 
absorption coefficient (m−1). The display range, scale 
resolution, repeatability, response time and warm up time of 
smoke meter are 0–9.99 m−1, 0.01 m−1, 0.1m−1, 0.3 s and 3 
minutes respectively.  
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Table 3: Specifications of test engine. 

Parameter Specification 
Model Kirloskar TV-1 
Type Single Vertical cylinder,four stroke,constant 

speed,bowl in piston,DI Diesel Engine 
Capacity 661 cc 
Bore and stroke 87.5mm*110mm 
Compression ratio 17.5:1 
Speed (constant) 1500 rpm 
Rated power 5.2 kw 
Loading type Eddy current dynamometer 
Injection pressure 200bar 

 
Experiments were conducted with different antioxidant 
concentrations of biodiesel fuel mixtures 
(0.010,0.015,0.025,0.050,0.01%-m) in addition to neat 
biodiesel and diesel fuel. In each load levels, the 
measurements of exhaust gas temperature, fuel consumption, 
fuel pressure, coolant temperature, exhaust gas flow rate, 
combustion pressure, NO, HC, CO and smoke emissions were 
carried out and recorded. 

3. RESULTS AND DISCUSSIONS 

The effect of aromatic amine antioxidant additive on NO, CO, 
HC and smoke emissions of cotton seed oil methyl ester 
fuelled diesel engine were systematically investigated in this 
study. The NO measurements were repeatable within each 
engine run, with replicate measurements varying by 3–6 ppm. 
The exhaust emissions of engine are greatly influenced by the 
addition of antioxidants with biodiesel. The results of 
performances and emissions of test antioxidant mixtures are 
compared with neat biodiesel and discussed in this section, as 
follows. 

3.1. Effects on NOx emissions 

The NO emissions during combustion of test antioxidant 
mixtures were compared to neat biodiesel and diesel. The 
changes in NO emissions that resulted from the antioxidant 
addition were found to be significant.  

Fig. 3 shows the NO reduction percent of different antioxidant 
mixtures relative to neat biodiesel and B20 fuel at full load 
(5.198 kW), 80% load (4.146 kW), 60% (3.095 kW) load, 
40% load (2.07 kW) and 20% load (1.021 kW) respectively. 
From the Fig. it can be seen that, antioxidant addition with 
B20 fuel reduce the NO emission up to a certain concentration 
and beyond the limit emission of NO increase with antioxidant 
loadings. At 80% load, the maximum NO reduction percent of 
DPPD additive is 27.63% and at full load 24.51% . As shown 
in Fig. 3 for B20 fuel, the NO emission reduction increased 
linearly with the concentration of DPPD additive. Similar 
trends were obtained by Dunn [19] and he observed increased 
antioxidant activity at lower loadings (less than 1000 ppm) 
and constant or reduced activity at higher loadings. The 
possible reason for the inverse relationship between treatment 

rate and amount of NO reduction is that all the p-
phenylenediamine based antioxidants contain nitrogen in its 
chemical structure and at higher loading, the excess 
antioxidant reacts with oxygen and forms additional NO. The 
antioxidant efficiency is defined by the ratio F/ [In H]. Where 
F is the antioxidant activity and In H is the acceptor reacting 
with alkoxyl and peroxyl radicals. This ratio does not depend 
on the antioxidant concentration [12]. For B20 fuel, we found 
27.63% and 24.51% reductions in NO emission, respectively, 
when the fuel was loaded with DPPD. DPPD was the most 
effective of the antioxidants studied, giving more than 25% 
decrease in measured NO emissions at all engine loads. The 
comparison of specific NO emission of cotton seed oil methyl 
ester with the best antioxidant additive to B20 is DPPD. For 
B20fuel, the NO produced by DPPD additive and base fuel at 
80% load was 12.79% and at full load is 14.36% respectively.  

 

Fig. 3: Load vs NOx Emission 

3.2. Effects on CO and HC emissions 

 

Fig. 4: Load vs CO emission 

Fig. 4 shows the influence of the DPPD antioxidant additive 
on the brake-specific CO emissions at various loads for B20. It 
can be seen that CO emissions increase with the addition of 
the antioxidants. At 80% load, the DPPD additive had about 
11.03% more CO emissions than the neat B20 fuel and neat 
biodiesel fuel respectively. The variation of brake-specific HC 
emissions with load is shown in Fig. 5. 
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 In the same manner as the CO emissions, the antioxidant 
addition was found to significantly increase HC emissions. 
The increase in HC emissions for B20 fuel was 2.63% and 
13.55% respectively at 80% and 100% load conditions. 
However, the levels of CO and HC emissions with the 
addition of antioxidants were still below those for petro-diesel. 
The reason for the increase 

in CO and HC emissions is explained as follows: Peroxyl 
(HO2) and hydrogen peroxide (H2O2) radicals are 
continuously produced during oxidation. These radicals are 
further converted into hydroxyl (OH) radicals by absorbing 
heat (Eqs. (5) and (6)). The OH radicals are responsible for the 
conversion of CO into CO2 and HC into H2O and CO2 . 
Treating biodiesel with antioxidants reduce the concentration 
of peroxyl and hydrogen peroxide radicals. This reduction in 
free radicals may have a significant effect on the formation of 
OH radicals and oxidation of CO and HC. 

H2O2→2OH   (1) 

 HO2→OH+O    (2) 

CO+OH →CO2+H        (3)            

HC + OH→HCHO     (4) 

HCHO + OH→H2O + HCO     (5) 

HCO+O2 →CO2+HO      (6) 

3.3. Effects on smoke emissions and EGT 

Fig. 6 shows the characteristics of the exhaust smoke 
emissions of biodiesel fuel and its blend containing the DPPD 
additive.  

The DPPD fuel mixture increased the smoke density by 12.5 
% and 6.6% when compared with the B20 fuel respectively for 
80% and 100% load conditions. It is important to note that the 
increase in smoke emissions were still below the level of 
diesel. Several factors may contribute to the increase of smoke 
opacity with antioxidant addition. The possible reasons for the 
increase of smoke are reduction of oxygen availability, 
increase of C―C bonds and increase of aromatic content due 
to the addition of antioxidants with fuels. 

 

Fig. 6: Load vs Smoke density 

 

Fig. 7: Load vs EGT 

3.4. Effects on brake thermal efficiency and SFC 

The variation of brake thermal efficiency with loads for the 
antioxidant fuel mixtures is shown in Fig. 8. 

 

Fig. 8: Brake power vs BTE 

At part loads change in brake thermal efficiencies due to 
antioxidants addition are insignificant but at full load, 
efficiencies were slightly lower than the neat biodiesel. At 
80% load, the brake thermal efficiency produced by the DPPD 
and B20 fuel mixture was 31.28%, while the base B20 fuel 
had 32.70%. For B20 fuel, there is no significant change in 
brake thermal efficiency at 80% load but at full load, 0.26% 
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